Chapter 1 - Differentiation
Exercise 1.2
Q.7 Differentiate the following w. r. t. x.
i)
$\begin{aligned}
y&=\cot ^{-1}\left[\cot \left(e^{x^{2}}\right)\right]\\
&Using \quad {cot }^{-1}(\cot x)=x\\
y &=e^{x^{2}} \\
&Diff \quad w.r.t \quad x \\
\frac{d y}{d x} &=\frac{d}{d x}\left(e^{x^{2}}\right) \\
&=e^{x^{2}} \cdot \frac{d}{d x} x^{2} \\
&=e^{x^{2}} \cdot 2 x \\
&=2 x e^{x^{2}}\\
\end{aligned}$
ii)
$\begin{aligned}
y&=\operatorname{cosec}^{-1}\left(\frac{1}{\cos 5^{x}}\right)\\
&=\operatorname{cosec}^{-1}\left(\sec 5^{x}\right) & \because \frac {1}{\cos x}=\sec x\\
&y=\operatorname{cosec}^{-1}\left(\operatorname{cosec}\left(\frac{\pi}{2}-5^{x}\right)\right] & \because \sec x=cosec(\pi/2-x)\\
&y=\frac{\pi}{2}-5^{x} & \because \operatorname{cosec}^{-1}(\operatorname{cosec}x) =x\\\\
&Diff \quad w.r.t. \quad x\\
\frac{d y}{d x}&=\frac{d}{d x}\left(\frac{\pi}{2}-5^{x}\right)\\
&=-5^{x} \cdot \log 5\end{aligned}$
iii)
$\begin{aligned}
y&=\cos ^{-1}(\sqrt{\frac{1+\cos x}{2}})\\\\
Using \\
[\cos 2 x&=2 \cos ^{2} x-1 \\
\cos 2 x+1&=2 \cos ^{2} x \\
\cos ^{2} x&=\frac{1+\cos 2 x}{2}\\
\frac{1+\cos x}{2}&=\cos ^{2}\left(\frac{x}{2}\right)]\\\\
&y=\cos ^{-1}(\sqrt{\cos ^{2}\left(\frac{x}{2}\right)}\\
&=\cos ^{-1}\left(\cos \frac{x}{2}\right)\\
&y=\frac{x}{2} \\
\frac{d y}{d x}&=\frac{x}{2} \\
&=\frac{1}{2}\frac{d}{d x} x\\
&=\frac{1}{2}
\end{aligned}$
iv)
$\begin{aligned}
y&=\cos ^{-1}(\sqrt{\frac{1-\cos \left(x^{2}\right)}{2}}\\
using \\
\cos 2 x&=1-2 \sin ^{2} x\\
2 \sin ^{2} x&=1-\cos 2 x\\
\sin ^{2} x&=\frac{1-\cos 2 x}{2}\\
\sin^{2}\left(\frac{x^{2}}{2}\right)&=\frac{1-\cos \left(x^{2}\right)}{2}\\\\
y&=\cos ^{-1} \sqrt{\sin ^{2}\left(\frac{x^{2}}{2}\right)}\\
y&=\cos ^{-1}\left(\sin \left(\frac{x^{2}}{2}\right)\right)\\
y&=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-\frac{x^{2}}{2}\right)\right) & \because \sin x=\cos(\pi/2-x)\\
y&=\frac{\pi}{2}-\frac{x^{2}}{2}\\
&Diff \quad w.r.t.\quad x \\
\frac{d y}{d x}&=\frac{d}{d x}\left(\frac{\pi}{2}-\frac{x^{2}}{2}\right)\\
&=0-\frac{1}{2} \cdot 2 x\\
\frac{d y}{d x}&=-x\end{aligned}$
v)
$\begin{aligned}
y&=\tan ^{-1}\left(\frac{1-\tan \left(\frac{x}{2}\right)}{1+\tan \left(\frac{x}{2}\right)}\right)\\\\
&using\\
&\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}\\
&\tan 45^{\circ}=\tan \left(\frac{\pi}{4}\right)^{c}=1\\
&\frac{1-\tan \left(\frac{x}{2}\right)}{1+\tan \left(\frac{x}{2}\right)}=\frac{\tan \left(\frac{\pi}{4}\right)-\tan \left(\frac{x}{2}\right)}{1+\tan \left(\frac{\pi}{4}\right) \cdot \tan \left(\frac{x}{2}\right)}=\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\\\\
y&=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right)\\
y&=\frac{\pi}{4}-\frac{x}{2}\\
&Diff \quad w.r.t \quad x \\
\frac{d y}{d x}&=\frac{d}{d x}\left(\frac{\pi}{4}-\frac{x}{2}\right)\\
&=0-\frac{1}{2} \cdot \frac{d}{d x}(x)\\
&=\frac{-1}{2}\end{aligned}$
vi)
$\begin{aligned}
y&=\operatorname{cosec}^{-1}\left(\frac{1}{4 \cos ^{3} 2 x-3 \cos 2 x}\right)\\
&using \\
&\cos 3 x =4 \cos ^{3} x-3 \cos x\\
y&=\operatorname{cosec}^{-1}\left(\frac{1}{\cos 3 \cdot(2 x)}\right)\\
&=\operatorname{cosec}^{-1}\left(\frac{1}{\cos 6 x}\right)\\
&=\operatorname{cosec}^{-1}(\sec 6 x)\\
&=\operatorname{cosec}^{-1}\left(\operatorname{cosec}\left(\frac{\pi}{2}-6 x\right)\right) \quad \because \sec x=\operatorname{cosec}\left(\frac{\pi}{2}-x\right)\\
y&=\frac{\pi}{2}-6 x\\
&Diff \quad wrt \quad x\\
\frac{d y}{d x}&=\frac{d}{d x}\left(\frac{\pi}{2}-6 x\right)\\
\frac{d y}{d x}&=-6
\end{aligned}$
vii)
$\begin{aligned}
y&=tan ^{-1}\left(\frac{1+\cos \left(\frac{x}{3}\right)}{\sin \frac{x}{3}}\right)\\
&Using\\
&\cos 2 x= 2\cos ^{2} x-1\\
&2 \cos ^{2} x=\cos 2 x+1\\
&2\cos ^{2} x ={1+\cos 2 x}\\
&2 \cdot \cos ^{2}\left(\frac{x}{6}\right)=1+\cos \left(\frac{x}{3}\right)\\
y&=\tan ^{-1}\left(\frac{2 \cdot \cos ^{2}\left(\frac{x}{6}\right)}{2 \cdot \sin \left(\frac{x}{6}\right) \cdot \cos \left(\frac{x}{6}\right)}\right) & \because \sin 2x =2 \sin x \cos x\\
y&=\tan ^{-1}\left(\frac{\cot (\frac{x}{6})}{\sin \left(\frac{x}{6}\right)}\right)\\
y&=\tan ^{-1}\left(\cot \left(\frac{x}{6}\right)\right)\\
y&=\tan ^{-1}\left(\tan ^{-1}\left(\frac{\pi}{2}-\frac{x}{6}\right)\right)\\
y&=\frac{\pi}{2}-\frac{x}{6}\\
&Diff \quad w.r.t \quad x \\
\frac{d y}{d x}&=-\frac{1}{6}\\
\end{aligned}$
viii)
$\begin{aligned}
y&=\cot ^{-1}\left(\frac{\sin 3 x}{1+\cos 3 x}\right)\\
using \\
&\Rightarrow \cos 2 x=2 \cos ^{2} x-1\\
&\cos 2 x+1=2 \cos ^{2} x\\
&\cos 2\left(\frac{3}{2} x\right)+1=2 \cos ^{2}\left(\frac{3}{2}\right){x}\\
&\therefore \cos 3 x+1=2 \cos ^{2}\left(\frac{3}{2}\right) x\\
&\Rightarrow \sin 2 x=2 \sin x \cos x\\
&\therefore\sin 3 x=2 \sin \left(\frac{3}{2}\right) x \cdot \cos \left(\frac{3}{2}\right) x\\\\
Now,\\
y&=\cot ^{-1}\left(\frac{2 \sin \left(\frac{3 x}{2}\right) \cos \left(\frac{3 x}{2} x\right)}{2 \cdot \cos ^{2}\left(\frac{3}{2}\right) x}\right)\\
y&=\cot ^{-1}\left(\tan \left(\frac{3 x}{2}\right)\right)\\
y&=\cot ^{-1}\left(\cot \left(\frac{\pi}{2}-\frac{3}{2} x\right)\right) \quad \because \tan \theta=\cot \left(\frac{\pi}{2}-\theta\right)\\
y&=\frac{\pi}{2}-\frac{3}{2} x\\
&Diff \quad w.r.t \quad x\\
\frac{d y}{d x}&=\frac{d}{d x}\left(\frac{\pi}{2}-\frac{3}{2} x\right)\\
&=-\frac{3}{2}\end{aligned}$
ix)
$\begin{aligned}
y&=\tan ^{1}\left(\frac{\cos 7 x}{1+\sin 7 x}\right)\\\\
&Using\\
&\cos 2x=cos^2x-sin^2x\\
&(cosx+sinx)^2=cos^2x+sin^2x+2sinxcosx =1+sin2x\\\\
y&=\tan^{-1}\left(\frac{\cos^{2}\left(\frac{7x}{2}\right)-\sin ^{2}\left(\frac{7x}{2}\right)}{\left[\cos\left(\frac{7 x}{2}\right)+\sin \left(\frac{7 x}{2}\right)\right]^{2}}\right] \\\\
y&=\tan ^{-1}\left(\frac{\left[\cos \left(\frac{7 x}{2}\right)-\sin \left(\frac{7 x}{2}\right)\right]\left[\cos \left(\frac{7 x}{2}\right)+\sin \left(\frac{7 x}{2}\right)\right]}{\left[\cos \left(\frac{7 x}{2}\right)+\sin \left(\frac{7 x}{2}\right)\right]\left[\cos \left(\frac{7 x}{2}\right)+\sin \left(\frac{7 x}{2}\right)\right]}\right)\\\\
y&=\tan ^{-1}\left(\frac{\cos \left(\frac{7 x}{2}\right)-\sin \left(\frac{7 x}{2}\right)}{\cos \left(\frac{7 x}{2}\right)+\sin \left(\frac{7 x}{2}\right)}\right)\\
&Divide \quad by \quad \cos \left(\frac{7x}{2}\right)\\\\
y&=\tan ^{-1}\left(\frac{1-\tan \left(\frac{7x}{2}\right)}{1+\tan \left(\frac{7x}{2}\right)}\right)\\\\
y&=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}- \frac{7x}{2}\right)\right)\\
y&=\frac{\pi}{4}-\frac{7 x}{2}\\
&Diff \quad w.r.t \quad x \\
\frac{d y}{d x}&=\frac{d}{d x}\left(\frac{\pi}{4}-\frac{7 x}{2}\right)\\
&=\frac{-7}{2}\end{aligned}$
x)
$\begin{aligned}
y&=\tan ^{-1}(\sqrt{\frac{1+\cos x}{1-\cos x}})\\
&Using\\
&\Rightarrow \cos 2 x=2 \cos ^{2} x-1\\
&1+\cos 2 x=2 \cos ^{2} x\\
&\therefore 1+\cos x=2 \cos ^{2}\left(\frac{x}{2}\right)\\
&\Rightarrow \cos 2 x=1-2 \sin ^{2} x\\
&1-\cos 2 x=2 \sin ^{2} x\\
&\therefore1-\cos x=2 \sin ^{2} \frac{x}{2}\\
y&=\tan ^{-1}\left(\sqrt{\frac{2 \cdot \cos ^{2}\left(\frac{x}{2}\right)}{2 \cdot \sin ^{2}\left(\frac{x}{2}\right)}}\right)\\
y&=\tan ^{-1}\left(\sqrt{\cot ^{2} \frac{x}{2}}\right)\\
y&=\tan ^{-1}\left(\cot \frac{x}{2}\right)\\
y&=\tan ^{-1}\left(\tan \left(\frac{\pi}{2}-\frac{x}{2}\right)\right)\\
y&=\frac{\pi}{2}-\frac{x}{2}\\
&Diff \quad w.r.t \quad x\\
\frac{d y}{d x}&=\frac{d}{d x}\left(\frac{\pi}{2}-\frac{x}{2}\right)\\
&=\frac{-1}{2}\end{aligned}$
xi)
$\begin{aligned}
y&=\tan ^{-1}(\operatorname{cosec} x+\cot x)\\
y&=\tan ^{-1}\left(\frac{1}{\sin x}+\frac{\cos x}{\sin x}\right)\\
&=\tan ^{-1}\left(\frac{1+\cos x}{\sin x}\right)\\
&Using\\
&\Rightarrow \cos 2 x=2 \cos ^{2} x-1\\
&2 \cos ^{2} x=1+\cos 2 x\\
&2 \cos ^{2}\left(\frac{x}{2}\right)=1+\cos x\\
&\Rightarrow \sin 2 x=2 \sin x \cdot \cos x\\
y&=\tan ^{-1}\left(\frac{2 \cdot \cos ^{2}\left(\frac{x}{2}\right)}{2 \cdot \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)}\right) \\
y&=\tan ^{-1}\left(\frac{\cos \left(x_{2}\right)}{\sin \left(\frac{x}{2}\right)}\right) \\
y&=\tan ^{-1}\left(\cot \left(\frac{x}{2}\right)\right)\\
y&=\tan ^{-1}\left(\tan \left(\frac{\pi}{2}-\frac{x}{2}\right)\right)\\
y&=\frac{\pi}{2}-\frac{x}{2}\\
& Diff \quad w.r.t. \quad x\\
\frac{d y}{d x}&=\frac{d}{d x}\left(\frac{\pi}{2}-\frac{x}{2}\right)\\
&=\frac{-1}{2}\end{aligned}$
xii)
$\begin{aligned}
y&=\cot ^{-1}\left(\frac{\sqrt{1+\sin \left(\frac{4 x}{3}\right)}+\sqrt{1-\sin \frac{4 x}{3}}}{\sqrt{1+\sin \left(\frac{4 x}{3}\right)}-\sqrt{1-\sin \left(\frac{4 x}{3}\right.})}\right)\\\\
y&=\cot ^{-1}\left(\frac{\sqrt{\left[\cos \frac{2 x}{3}+\sin \frac{2 x}{3}\right]^{2}}+\sqrt{\left[\cos \frac{2 x}{3}-\sin \frac{2 x}{3}\right]^{2}}}{\sqrt{\left[\cos \frac{2 x}{3}+\sin \frac{2 x}{3}\right]^{2}}-\sqrt{\left[\cos \frac{2 x}{3}-\sin \frac{2 x}{3}\right]^{2}}}\right)\\\\
y&=\cot ^{-1}\left(\frac{\cos \left(\frac{2x}{3} \right)+\sin \left(\frac{2 x}{3}\right)+\cos \left(\frac{2 x}{3}\right)-\sin \left(\frac{2 x}{3}\right)}{\cos \left(\frac{2 x}{3}\right)+\sin \left(\frac{2 x}{3}\right)-\cos \left(\frac{2 x}{3}\right)+\sin \left(\frac{2 x}{3}\right)}\right)\\\\
y&=\cot ^{-1}\left(\frac{2 \cdot \cos \left(\frac{2 x}{3}\right)}{2 \sin \left(\frac{2 x}{3}\right)}\right)\\\\
y&=\cot ^{-1}\left(\frac{\left.\cos \frac{2 x}{3}\right)}{\sin \left(\frac{2 x}{3}\right)}\right)\\\\
y&=\cot ^{-1}\left(\cot \left(\frac{2 x}{3}\right)\right)\\
y&=\frac{2 x}{3}\\
&Diff \quad w.r.t \quad x\\
\frac{d y}{d x}&=\frac{2}{3}\end{aligned}$
Exercise 1.2
Tag
(7) Differentiate the following w. r. t. x.
(i) cot−1 [cot (ex2)]
(ii) cosec−1(1/cos (5x)
(iii) cos−1 sqrt((1 + cos x)/2)
(iv) cos−1 sqrt((1 − cos (x^2)/2)
(v) tan−1(1 − tan (x/2))/(1 + tan (x/2))
(vi) cosec^−1(1/(4 cos^32x − 3 cos 2x))
(vii) tan−1(1 + cos (x/3))/sin (x/3))
(viii) cot−1(sin 3x/(1 + cos 3x))
(ix) tan−1t(cos 7x/(1 + sin 7x))
(x) tan−1sqrt((1 + cos x)/(1 − cos x))
(xi) tan−1sqrt(cosec x + cot x)
(xii) cot−1(1 + sin (4x3 ) + 1 − sin (4x3 )1 + sin (4x3 ) − 1 − sin (4x3 ))
Maharashtra State Board 12th Maths Book Solutions
Maharashtra State Board 12th Maths Book exercise Solutions
Maharashtra State Board 12th Maths textbook Solutions
Maharashtra State Board 12th Maths textbook exercise Solutions
Maharashtra State Board 12th Mathematics Book Solutions
Maharashtra State Board 12th Mathematics Book exercise Solutions
Maharashtra State Board 12th Mathematics textbook Solutions
Maharashtra State Board 12th Mathematics textbook exercise Solutions
Maharashtra State Board HSC 12th Mathematics Book Solutions
Maharashtra State Board HSC 12th Mathematics Book exercise Solutions
Maharashtra State Board HSC 12th Mathematics textbook Solutions
Maharashtra State Board HSC 12th Mathematics textbook exercise Solutions
Mathematics Part - II (Solutions) Textbook Solutions for MAHARASHTRA Class 12 MATH, Mathematics Part - II (Solutions) Textbook Solutions for MAHARASHTRA Class 12 MATH,
Maharashtra State Board HSC 12th Mathematics Book exercise 1.1 differentiation Solutions 2021 new
Maharashtra State Board HSC 12th Mathematics Book exercise 1.1 differentiation Solutions 2021 new Solutions
Maharashtra State Board HSC 12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new
Maharashtra State Board HSC 12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new