Differentiation EX 1.2 Q.4 , Q.5 Maharashtra state Board Mathematics and statistic for arts and science

Chapter 1 - Differentiation 

Exercise 1.2

Q.4


Q.4 )
$\begin{aligned} f(x)&=x^{3}+x-2 \quad\left(f^{-1}\right)^{\prime}(0)\\ &Diff \quad w.r.t \quad x\\ \frac{d}{d x}f(x)&=\frac{d}{d x}(x^{3}+x-2)\\ f^{\prime}(x)&=3 x^{2}+1\\ \left(f^{-1}\right)^{\prime}&=\frac{1}{f^{\prime}(x)}\\ &=\frac{1}{3 x^{2}+1}\\ \left(f^{-1}\right)^{\prime}&=\frac{1}{3(0)^{2}+1}\\ &=\frac{1}{1}\\ &=1\end{aligned}$


Q.5  
i)
$\begin{aligned} &\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\\ Let \\ f(x)&=\tan ^{-1} x+\cot ^{-1} x \ldots \ldots (1) \\ &Diff \quad w.r.t \quad x\\ \frac{d}{d x} f(x)&=\frac{d}{d x}\left(\tan ^{-1} x+\cot ^{-1} x\right)\\ f^{\prime}(x)&=\frac{1}{1+x^{2}}+\frac{-1}{1+x^{2}}\\ f^{\prime}(x)&=\frac{1}{1+x^{2}}-\frac{1}{1+x^{2}}=0\\ f^{\prime}(x)&=0\\ &\therefore \text { f(x) is constant function}\\ Let,\\ f(x)&=k \quad \text {for any value at x}\\ f(0)&=\tan ^{-1}(0)+\cot ^{-1}(0)\\ &=0+\frac{\pi}{2} \\ \therefore k&=\frac{\pi}{2}=f(x)\end{aligned}$


ii)
$\begin{aligned} &\sec ^{-1}(x)+\operatorname{cosec}^{-1}(x)=\frac{\pi}{2}\\ Let,\\ f(x)&=\sec ^{-1}(x)+\operatorname{cosec}^{-1}(x)\\ &Diff \quad w.r.t \quad x \\ \frac{d}{d x} f(x)&=\frac{d}{d x}\left[\sec ^{-1}(x)+\operatorname{cosec}^{-1}(x)\right]\\ f^{\prime}(x)&=\frac{1}{x \sqrt{x^{2}-1}}-\frac{1}{x \sqrt{x^{2}-1}}\\ f^{\prime}(x)&=0\\ \therefore f(x) &=\text { constant function } \\ f(x) &=k \quad \text {for any value of x}\\ f(1) &=\sec ^{-1}(x)+\operatorname{cosec}^{-1}(x) \\ &=\sec ^{-1}(1)+\operatorname{cosec}^{-1}(1) \\ &=0+\frac{\pi}{2}\\ &\therefore \sec ^{-1}(x)+\operatorname{cosec}^{-1}(x)=\frac{\pi}{2}\end{aligned}$






Exercise 1.2