Differentiation EX 1.2 Q.3 - Maharashtra state Board Mathematics and statistic for arts and science

Chapter 1 - Differentiation 

Exercise 1.2

Q.3 


i)
$\begin{aligned} y&=x^{5}+2 x^{3}+3 x\\ & Diff \quad w.r.t. \quad x \\ \frac{d y}{d x}&=\frac{d}{d x}\left(x^{5}+2 x^{3}+3 x\right)\\ \frac{d y}{d x}&=5 x^{4}+6 x^{2}+3\\\\ Now,\\ \frac{d x}{d y}&=\frac{1}{\left(\frac{d y}{d x}\right)}\\ &=\frac{1}{5 x^{4}+6 x^{2}+3}\\\\ at ,x=1 \\ y&=(1)^{5}+2(1)^{3}+3(1)\\ y&=1+2+3\\ y&=6 & \\\\ \therefore \left[\frac{d x}{d y}\right]_{y=6} &=\frac{1}{\left[\frac{d y}{d x}\right]_{x=1}} \\ &=\frac{1}{5(1)^{4}+6(1)^{2}+3} \\ &=\frac{1}{5+6+3} \\ &=\frac{1}{14} \end{aligned}$
ii)
$\begin{aligned} y&=e^{x}+3 x+2\\ &Diff \quad w.r.t. \quad x \\ \frac{d y}{d x}&=\frac{d}{d x}\left(e^{x}+3 x+2\right)\\ \frac{d y}{d x}&=e^{x}+3\\\\ Now, \\ \frac{d x}{d y}&=\frac{1}{\left(\frac{d y}{d x}\right)}\\ &=\frac{1}{e^{x}+3}\\ at,x=0\\ y&=e^{0}+3(0)+2\\ &=1+2\\ &=3\\\\ \left[\frac{d x}{d y}\right]_{y=3} &=\frac{1}{\left(\frac{d y}{d x}\right)_{x=0}}\\ &=\frac{1}{e^{0}+3} \\ &=\frac{1}{1+3} \\ &=\frac{1}{4} \end{aligned}$
iii)
$\begin{aligned} y&=3 x^{2}+2 \log x^{3}\\ y&=3 x^{2}+2 \times 3 \log x\\ &Diff \quad w.r.t. \quad x \\ \frac{d y}{d x} &=6 x+6 \frac{1}{x} \\ &=6 x+\frac{6}{x} \\ &=\frac{6 x^{2}+6}{x} \\ Now,\\ \frac{d x}{d y}&=\frac{1}{\left(\frac{d y}{d x}\right)}\\ &=\frac{1}{\left(\frac{6 x^{2}+6}{x}\right)}\\ &=\frac{x}{6\left(x^{2}+1\right)}\\ at, x=1\\ y&=3(1)^{2}+2 \cdot \log 1\\ y &=3+2 \cdot \log 1 \\ y&=3 \\ \\\left[\frac{d y}{d y}\right]_{y=3} &=\frac{1}{\left[\frac{d y}{d x}\right]_{x=1}} \\ &=\frac{1}{6(1+1)} \\ &=\frac{1}{12} \end{aligned}$
iV)
$\begin{aligned} y&=\sin (x-2)+x^{2}\\ &Diff \quad w.r.t. \quad x \\ \frac{d y}{d x}&=\frac{d}{d x}\left[\sin (x-2)+x^{2}\right]\\ \frac{d y}{d x}&=\cos (x-2)+2 x\\\\ Now, \\ \frac{d x}{d y}&=\frac{1}{\left(\frac{d y}{d x}\right)}\\ &=\frac{1}{\cos (x-2)+2 x}\\ at,x=2\\ y&=\sin (2-2)+2^{2}\\ y&=\sin 0+4\\ y&=4\\\\ \left[\frac{d x}{d y}\right]_{y=4} &=\frac{1}{\left[\frac{d y}{d x}\right]_{x=2}} \\ \\ &=\frac{1}{\cos (2-2)+2 \cdot 2} \\ &=\frac{1}{\cos 0+4} \\ &=\frac{1}{1+4} \\ &=\frac{1}{5} \end{aligned}$


Exercise 1.2