Differentiation EX 1.4 Q.4 - Maharashtra state Board Mathematics and statistic for arts and science

Chapter 1 - Differentiation 

Exercise 1.4

Q.4



i)
$\begin{aligned} &Differentiate \quad x sinx \quad w. r . t \quad tanx\\ sol^n\\ Let, u&=x \sin x, \quad v=\tan x\\ \frac{d u}{d v}&=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}\\ u&=x \sin x\\ &Diff \quad w.r.t \quad x\\ \frac{d u}{d x}&=x \cdot \frac{d}{d x}(\sin x)+\sin x \cdot \frac{d}{d x}(x)\\ &=x \cos x+\sin x\\ And,\\ v&=\tan x\\ &Diff \quad w.r.t \quad x\\ \frac{d v}{d x}&=\frac{d}{d x} \tan x \\ &=\sec ^{2} x \\ Now,\\ \frac{d u}{d v}&=\frac{x \cos x+\sin x}{\sec ^{2} x}\end{aligned}$


ii)
$\begin{aligned} &Differentiate \quad \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \quad w.r.t \quad \tan ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\\ Let \quad u&=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right), v=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\\ u&=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\\ Put,\\ x&=\tan \theta\\ u&=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)\\ u&=\sin ^{-1}(\sin 2 \theta)\\ u&=2\theta\\ u&=2 \tan^{-1}x\\ &Diff \quad w.r.t \quad x\\ \frac{d u}{d x}&=\frac{2}{1+x^2}\\ And,\\ \quad v&=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\\ put,\\ x&=\tan \theta\\ v&=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)\\ v&=\cos ^{-1}(\cos 2 \theta)\\ v&=2\theta\\ v&=2 \tan^{-1}x\\ &Diff \quad w.r.t \quad x\\ \frac{d v}{d x}&=\frac{2}{1+x^2}\\ Now,\\ \frac{d u}{d v}&=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}\\\\ &=\frac{\frac{2}{1+x^2}}{\frac{2}{1+x^2}}\\\\ &=1\end{aligned}$



iii)
$\begin{aligned} &Differentiate \quad \tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) \quad w.r.t \quad \sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)\\ Let,\\ u&=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)\\ &Put,\quad x=\sin \theta\\ u&=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}\right)\\ u&=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos ^{2} \theta}}\right)\\ u&=\tan ^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)\\ u&=\tan ^{-1}(\tan \theta)\\ u&=\theta\\ u&=\sin^{-1}x\\ &Diff \quad w.r.t \quad x \\ \frac{d u}{d x}&=\frac{1}{\sqrt{1-x^2}}\\\\ And,\\ v&=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right) \\ &Put,\quad x=\cos \theta)\\ v&=\sec ^{-1}\left(\frac{1}{2 \cos ^{2} \theta-1}\right)\\ v&=\sec ^{-1}\left(\frac{1}{\cos 2 \theta}\right)\\ v&=\sec ^{-1}(\sec 2 \theta)\\ v&=2\theta\\ v&=2\cos^{-1}x\\ &Diff \quad w.r.t \quad x \\ \frac{d v}{d x}&=\frac{-2}{\sqrt{1-x^2}}\\\\ Now,\\ \frac{d v}{d x}&=\frac{\frac{d u}{d x}}{\frac{d v }{d x}}\\ \frac{d u}{d v}&=\frac{\frac{1}{\sqrt{1-x^2}}}{\frac{-2}{{\sqrt{1-x^2}}}}\\\\ \frac{d u}{d v}&=\frac{-1}{2} \end{aligned}$


iv)
$\begin{aligned} &Differentiate \quad \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) \quad w.r.t \quad \tan ^{-1}(x)\\ Let,\\ u&=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), \quad v=\tan ^{-1}(x)\\ Put, x&=\tan \theta\\ u&=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)\\ u&=\cos ^{-1}(\cos 2 \theta)\\ u&=2\theta\\ u&=2\tan^{-1}x\\ &Diff \quad w.r.t \quad x\\ \frac{d u}{d x}&=\frac{2}{1+x^2}\\\\ And, \\ \quad v&=\tan ^{-1}(x)\\ v&=\tan ^{-1}(\tan \theta)\\ v&=\theta\\ u&=\tan^{-1}x\\ &Diff \quad w.r.t \quad x\\ \frac{d v}{d x}&=\frac{1}{1+x^2}\\ Now,\\ \frac{d u}{d v}&=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}\\\\ &=\frac{\frac{2}{1+x^2}}{\frac{1}{1+x^2}}\\\\ &=2\end{aligned}$



v)
$\begin{aligned} &Differentiate \quad u=3^{x}\quad w.r.t \quad v=\log _{x} 3\\ Let,\\ u&=3^{x}\\ &Diff \quad w.r.t \quad x \\ \frac{d u}{d x}&=3^{x} \log 3\\\\ And,\\ \quad v&=\log _{x} 3\\ v&=\frac{\log 3}{\log x}\\ &Diff \quad w.r.t \quad x \\ \frac{d v}{d x} &=\log 3 \left(\frac{1}{\log x}\right) \\ &=\log 3 \frac{d}{d x}(\log x)^{-1} \\ &=\log 3 \cdot(-1)(\log x)^{-2} \frac{d}{d x} \log x \\ &=\frac{\log 3}{x(\log x)^{2}} \\ Now,\\ \frac{d u}{d v}&=\frac{\frac{d u}{dx}}{\frac{d v}{d x}}\\\\ &=\frac{3^{x} \log 3}{\frac{\log 3}{x(\log x)^{2}}}\\\\ &=3^{x}(\log x)^{2} x \end{aligned}$


vi)
$\begin{aligned} &Differentiate \quad \tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right) \quad w.r.t \quad \sec^{-1}x\\ Let,\\ u&=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)\\ u&=\tan ^{-1}\left[\frac{\cos ^{2}\left(\frac{x}{2}\right)-\sin ^{2}\left(\frac{x}{2}\right)}{\left[\cos \left(\frac{x}{2}\right)+\sin \left(\frac{x}{2}\right)\right]^{2}}\right]\\ \\ u&=\tan ^{-1}\left[\frac{\left[\cos \left(\frac{x}{2}\right)-\sin \left(\frac{x}{2}\right)\right]\left(\cos \left(\frac{x}{2}\right)+\sin \left(\frac{x}{2}\right)\right)}{\left[\cos \left(\frac{x}{2}\right)+\sin \left(\frac{x}{2}\right)\right]^{2}}\right]\\ \\ u&=\tan ^{-1}\left[\frac{\cos \left(\frac{x}{2}\right)-\sin \left(\frac{x}{2}\right)}{\cos \left(\frac{x}{2}\right)+\sin \left(\frac{x}{2}\right)}\right]\\ &Divide \quad by \cos \left(\frac{x}{2}\right)\\ \\ u&=\tan ^{-1}\left[\frac{1-\tan (x / 2)}{1+\tan \left(\frac{x}{2}\right)}\right]\\ u&=\tan ^{-1}\left[\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right]\\ u&=\frac{\pi}{4}-\frac{x}{2}\\ &Diff \quad w.r.t \quad x\\ \frac{d u}{d x}&=\frac{-1}{2}\\\\ And,\\ \quad v&=\sec ^{-1} x\\ &Diff \quad w.r.t \quad x\\ \frac{d v}{d x}&=\frac{1}{x \sqrt{x^{2}-1}}\\\\ Now,\\ \frac{d u}{d v} &=\frac{\frac{d u}{d x}}{\frac{d v}{d x}} \\ \\ \frac{d u}{d v} &=\frac{\frac{-1}{2}}{\frac{1}{x \sqrt{x^{2}-1}}} \\ \\ \frac{d u}{d v} &=\frac{-x \sqrt{x^{2}-1}}{2} \end{aligned}$



vii)
$\begin{aligned} &Differentiate \quad x^{x} \quad w.r.t \quad x^{\sin x}\\ Let,\\ u&=x^{x}\\ &Taking \quad log\\ \log u&=\log x^{x}\\ \log u&=x \log x\\ &Diff \quad w.r.t \quad x\\ \frac{1}{u} \cdot \frac{d u}{d x}&=x \cdot \frac{d}{d x} \log x+\log x \cdot \frac{d}{d x} x\\ &=\frac{x}{x}+\log x\\ \frac{d u}{d x}&=u(1+\log x)\\ \frac{d u}{d x}&=x^{x}(1+\log x)\\\\ And, \\ \quad v&=x^{\sin x}\\ \log v&=\log x^{\sin x}\\ \log v&=\sin x \cdot \log x\\ &Diff \quad w.r.t \quad x\\ \frac{1}{v} \frac{d v}{d x}&=\sin x \cdot \frac{d}{d x} \log x+\log x \cdot \frac{d}{d x} \sin x\\ \\ &=\frac{\sin x}{x}+\log x \cdot \cos x\\ \frac{d v}{d x}&=x^{\sin x}\left(\frac{\sin x}{x}+\log x \cdot \cos x\right)\\ \\ Now,\\ \frac{d u}{d v}&=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}\\ \\ &=\frac{x^{x}(1+\log x)}{x^{\sin x}\left(\frac{\sin x}{x}+\log x \cos x\right)}\\ &=\frac{x^{x} \cdot (1+\log x)}{x^{\sin x} \cdot \frac{1}{x}(\sin x+x \log x \cos x)}\\ &=\frac{x^{x} \cdot x(1+\log x)}{x^{\sin x} \cdot (\sin x+x \log x \cos x)}\\ &=\frac{x^{+1-\sin x}(1+\log x)}{(\sin x+x \log x \cos x)}\end{aligned}$


viii)
$\begin{aligned} &Differentiate \quad u=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right), v=\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)\\ Let,\\ u&=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\\ &Put,x=\tan \theta\\ u&=\tan ^{1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right)\\ u&=\tan ^{-1}\left(\frac{\sqrt{\sec^2\theta}-1}{\tan \theta}\right)\\ u&=\tan ^{-1}\left(\frac{{\sec\theta}-1}{\tan \theta}\right)\\ u&=\tan ^{-1}\left(\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}}\right)\\ u&=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)\\ u&=\tan ^{-1}\left(\frac{2 \cdot \sin ^{2}\left(\frac{\theta}{2}\right)}{2 \cdot \sin (\theta/2) \cos \left(\frac{\theta}{2}\right)}\right)\\ u&=\tan ^{-1}\left(\frac{\sin \left(\frac{\theta}{2}\right)}{\cos ( \theta/ 2)}\right)\\ u&=\tan ^{-1}\left(\tan \left(\frac{\theta}{2}\right)\right)\\ u&=\frac{\theta}{2}\\ u&= \frac{\tan^{-1 }x}{2}\\ &Diff \quad w.r.t \quad x \\ \frac{d u}{d x}&=\frac{1}{2\left(1+x^{2}\right)}\\\\ And,\\ v&=\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right)\\ &put,x=\sin x\\ v&=\tan ^{1}\left(\frac{2 \sin \theta \sqrt{1-\sin ^{2} \theta}}{1-2 \sin^2\theta}\right)\\ v&=\tan ^{1}\left(\frac{2 \sin \theta \cdot \cos \theta}{\cos 2 \theta}\right)\\ v&=\tan ^{-1}\left(\frac{\sin 2 \theta}{\cos 2 \theta}\right)\\ v&=\tan ^{-1}(\tan 2\theta)\\ v&=2 \theta\\ v&=2 \cdot \sin ^{-1}(x)\\ &Diff \quad w.r.t \quad x \\ \frac{d v}{d x}&=\frac{2}{\sqrt{1-x^{2}}}\\\\ Now,\\ \frac{d u}{d v}&=\frac{\frac{d y}{d x}}{\frac{d v}{d x}}\\\\ \frac{d u}{d v}&=\frac{\frac{1}{2(1+x)}}{\frac{2}{\sqrt{1-x^{2}}}}\\\\ \frac{d u}{d v}&=\frac{1}{4} \frac{\sqrt{1-x^{2}}}{\left(1+x^{2}\right)}\end{aligned}$




(4) (i) Differentiate x sin x w. r. t. tan x.
(ii) Differentiate sin^-1(2x/(1 + x2)) w. r. t. cos−1(1 − x2/1 + x2 )
(iii) Differentiate tan−1(x/sqrt( 1 − x^2) w. r. t. sec−1(1/2x^2 − 1)
(iv) Differentiate cos−1(1 − x^2)/(1 + x2) w. r. t. tan−1 x.
(v) Differentiate 3^x w. r. t. logx 3.
(vi) Differentiate tan−1(cos x/1 + sin x)w. r. t. sec−1 x.
(vii) Differentiate xx w. r. t. x^sin x.
(viii) Differentiate tan−1 (sqrt( 1 + x^2) − 1)/x w. r. t. tan−1 (2xsqrt1 − x21 − 2x2

Tags
Maharashtra State Board 12th Maths Book Solutions,Maharashtra State Board 12th Maths Book exercise Solutions,Maharashtra State Board 12th Maths textbook Solutions,Maharashtra State Board 12th Maths textbook exercise Solutions,Maharashtra State Board 12th Mathematics Book Solutions,Maharashtra State Board 12th Mathematics Book exercise Solutions,Maharashtra State Board 12th Mathematics textbook Solutions,Maharashtra State Board 12th Mathematics textbook exercise Solutions,Maharashtra State Board HSC 12th Mathematics Book Solutions,Maharashtra State Board HSC  12th Mathematics Book exercise Solutions,Maharashtra State Board HSC  12th Mathematics textbook Solutions,Maharashtra State Board HSC  12th Mathematics textbook exercise ,Solutions,Mathematics Part - II (Solutions) Textbook Solutions for ,AHARASHTRA Class 12 MATH, Mathematics Part - II (Solutions) Textbook Solutions for MAHARASHTRA Class 12 MATH, Maharashtra State Board HSC 12th Mathematics Book exercise 1.1 differentiation Solutions 2021 new,Maharashtra State Board HSC  12th Mathematics Book exercise 1.4 differentiation Solutions 2021 new Solutions,Maharashtra State Board HSC  12th Mathematics textbook exercise 1.4 differentiation Solutions 2021 new ,Maharashtra State Board HSC  12th Mathematics textbook exercise 1.4 differentiation Solutions 2021 new,differentiation 12th hsc solution,differentiation 12th hsc solution,differentiation, 12th hsc pdf,differentiation solution class 12 hsc,differentiation exercises with answers,differentiation 12th hsc pdf download,differentiation exercises with answers pdf class 12,differentiation 12th hsc pdf commerce,differentiation target pdf,navneet guide pdf