Differentiation EX 1.4 Q.1 - Maharashtra state Board Mathematics and statistic for arts and science

Chapter 1 - Differentiation 

Exercise 1.4

Q.1 (1) Find dy/dx  if

i)
$\begin{aligned} x&=a t, y=2 a t\\ Given, \\ x&=a t^{2}\\ &Diff\quad w.r.t. \quad t \\ \frac{d x}{d t}&=\frac{d}{d t}a t^{2}\\ \frac{d x}{d t}&=2 a t\\\\ And,\\ &y=2 a t\\ &Diff \quad w.r.t. \quad t \\ \frac{d y}{d t}&=2 a \cdot \frac{d}{d t}(t)\\ &=2a\\ Now,\\ \frac{d y}{d x}&=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 a}{2 a t}\\ &=\frac{1}{t}\end{aligned}$


ii)
$\begin{aligned} x&=a \cot \theta, y=b \operatorname{cosec} \theta\\ Given,\\ x&=a \cot \theta\\ &Diff \quad w.r.t. \quad \theta \\ \frac{d x}{d \theta} &=a \cdot \frac{d}{d \theta} \cot \theta \\ &=-a.cosec ^{2} \theta\\ And,\\ y&=b \operatorname{cosec} \theta\\ &Diff \quad w.r.t. \quad \theta \\ \frac{d y}{d \theta} &=b \cdot \frac{d}{d \theta} cosec \theta \\ &=-b \operatorname{cosec} \cot \theta\\ Now,\\ \frac{d y}{d x}&=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-b \operatorname{cosec} \cdot \cot \theta}{-a \operatorname{cosec}^{2} \theta}\\ &=\frac{b}{a} \frac{\cot \theta}{\operatorname{cosec} \theta}\\ &=\frac{b}{a} \frac{\frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta}}\\ &=\frac{b}{a} \cos \theta \end{aligned}$



iii)
$\begin{aligned} x& = \sqrt{a^{2}+m^{2}} \quad, \quad y=\log \left(a^{2}+m^{2}\right)\\ Given,\\ x& =\sqrt{a^{2}+m^{2}}\\ & Diff \quad w.r.t. \quad m \\ \frac{d x}{d m}&=\frac{d}{d m}(\sqrt{a^{2}+m^{2}})\\ & =\frac{1}{2 \sqrt{a^{2}+m^{2}}} \frac{d}{d m}\left(a^{2}+m^{2}\right)\\ & =\frac{1}{2 \sqrt{a^{2}+m^{2}}} \cdot 2 m\\ & =\frac{1}{\sqrt{a^{2}+m^{2}}} \cdot m\\ And,\\ y& =\log \left(a^{2}+m^{2}\right) \\ & Diff \quad w.r.t. \quad m \\ \frac{d y}{d m}& =\frac{d}{d m} \log \left(a^{2}+m^{2}\right)\\ & =\frac{1}{a^{2}+m^{2}} \cdot \frac{d}{d m}\left(a^{2}+m^{2}\right)\\ \frac{d y}{d m}& =\frac{1}{a^{2}+m^{2}} \cdot 2 m\\ Now,\\ \frac{d y}{d x}& =\frac{\frac{d y}{d m}}{\frac{d x}{d m}}\\\\ & =\frac{\frac{2 m}{a^{2}+m^{2}}} {\frac{m}{\sqrt{a^{2}+m^{2}}}}\\ \\ &=\frac{2}{\sqrt{a^{2}+m^{2}}} \end{aligned}$


iv)
$\begin{aligned} x&=\sin \theta,y=\tan \theta\\ Give,\\ x&=\sin \theta\\ &Diff \quad w.r.t \quad \theta\\ \frac{d x}{d \theta}&=\frac{d}{d \theta} \sin \theta\\ &=\cos \theta\\ And,\\ y&=\tan \theta\\ &Diff \quad w.r.t \quad \theta\\ \frac{d y}{d \theta}&=\frac{d }{d \theta}(\tan \theta)\\ &=\sec ^{2} \theta\\ Now,\\ \frac{d y}{d x}&=\frac{d y}{d \theta} \times \frac{d \theta}{d x} \\ or\\ \frac{d y}{d x}&=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}} \\ &=\frac{\sec ^{2} \theta}{\cos \theta}\\ &=\frac{1}{\cos ^{2} \theta \cdot \cos \theta} \\\\ &=\frac{1}{\cos ^{3} \theta}\\\\ &=\sec ^{3} \theta\\ \end{aligned}$



v)
$\begin{aligned}\\ x&=a(1-\cos \theta), y=b(\theta-\sin \theta)\\ Given\\ x&=a(1-\cos \theta)\\ & Diff \quad w.r.t.\quad \theta\\ \frac{d x}{d \theta}&=a \cdot \frac{d}{d \theta}(1-\cos \theta)\\ &=a \sin \theta\\ And,\\ y&=b(\theta-\sin \theta)\\ & Diff \quad w.r.t.\quad \theta\\ \frac{d y}{d \theta}&=b \cdot \frac{d}{d \theta}(\theta-\sin \theta)\\ &=b(1-\cos \theta)\\ Now,\\ \frac{d y}{d x}&=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}\\\\ &=\frac{b(1-\cos \theta)}{a \sin \theta}\\ &=\frac{b}{a} \frac{2 \cdot \sin ^{2} \left(\frac{\theta}{2}\right)}{2 \cdot \sin \left(\frac{\theta}{2}\right)\cos \left(\frac{\theta}{2}\right)} \\ &=\frac{b}{a} \cdot \frac{\sin \left(\frac{\theta}{2}\right)}{\cos \left(\frac{\theta}{2}\right)}\\ &=\frac{b}{a} \tan \left(\frac{\theta}{2}\right) \end{aligned}$


vi)
$\begin{aligned} x&=\left(t+\frac{1}{t}\right)^{a}, y=a^{t+\frac{1}{t}}\\ Given,\\ &put, \left(t+\frac{1}{t}\right)=m\\ x&=m^{a}\\ &Diff \quad w.r.t. \quad m \\ \frac{d x}{d m}&=\frac{d}{d m}(m)^{a}\\ &=a.m^{a-1}\\ And,\\ y&=a^{t+\frac{1}{t}} \\ y &=a^{m}\\ &Diff \quad w.r.t. \quad m \\ \frac{d y}{d m}&=\frac{d}{d m}\left(a^{m}\right)\\ &=a^{m} \cdot \log a\\ Now,\\ \frac{d y}{d x}&=\frac{\frac{d y}{d x}}{\frac{d x}{d x}}\\\\ &=\frac{a^{m} \log a}{a \cdot m^{a-1}}\\\\ &=\frac{a^{m} \log a}{a \cdot m^{a}.m^{-1}}\\\\ &=\frac{a^{m} \log a \cdot m}{a \cdot m^{a}}\\\\ &=\frac{y}{a x} \log a\left(1+\frac{1}{t}\right)\\\\ &=\frac{y}{x a} \log a\left(\frac{t^{2}+1}{t}\right)\\\\ &=\frac{4\left(t^{2}+1\right) \log a}{x a}\end{aligned}$



vii)
$\begin{aligned} x&=\cos ^{2}\left(\frac{2 t}{1+t^{2}}\right) ; y=\sec ^{-1}(\sqrt{1+t^{2}})\\ Given,\\ x&=\cos ^{-1}\left(\frac{2 t}{1+t^{2}}\right)\\ put, \quad t&=\tan \theta\\ x&=\cos ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)\\ x&=\cos ^{-1}( \sin 2 \theta)\\ x&=\cos ^{-1}\left(\cos ^{-1}\left(\frac{\pi}{2}-2 \theta\right)\right)\\ x&=\frac{\pi}{2}- 2 \theta\\ &Diff \quad w.r.t \quad \theta\\ \frac{d x}{d \theta}&=\frac{d}{d \theta}\left(\frac{\pi}{2}-2\theta \right)\\ &=-2\\ And\\ y&=\sec ^{-1}(\sqrt{1+t^{2}})\\ & put\quad t=\tan \theta\\ y&=\sec ^{-1}(\sqrt{1+\tan ^{2} \theta})\\ y&=\sec ^{-1}(\sqrt{\sec ^{2} \theta})\\ y&=\sec ^{2}(\sec \theta)\\ y&=\theta\\ &Diff \quad w.r.t \quad \theta\\ \frac{d y}{d \theta}&=1\\\\ Now,\\ \frac{d y}{d x}&=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}\\ &=\frac{1}{-2}\end{aligned}$


viii)
$\begin{aligned} x&=\cos ^{1}\left(4 t^{3}-3 t\right), y=\tan ^{-1}\left(\frac{\sqrt{1-t^{2}}}{t}\right)\\ Given,\\ x&=\cos ^{-1}\left(4 t^{3}-3 t\right)\\ &Put,\quad t=\cos \theta \\ x &=\cos ^{-1}\left(4 \cos ^{3} \theta-2 \cos \theta\right) \\ x &=\cos ^{-1}(\cos 3 \theta) \\ x &=3 \theta \\ & Diff \quad w.r.t. \quad \theta \\ \frac{d x}{d \theta}&=3 \cdot \frac{d}{d \theta}(\theta)\\ &=3\\ And,\\ y&=\tan ^{-1}\left(\frac{\sqrt{1-t^{2}}}{t}\right)\\ &Put,\quad t=\cos \theta \\ y&=\tan ^{-1}\left(\frac{\sqrt{1-\cos ^{2} \theta}}{\cos \theta}\right)\\ &=\tan ^{-1}\left(\frac{\sqrt{\sin ^{2} \theta}}{\cos\theta}\right)\\ &=\tan ^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)\\ &=\tan ^{-1}(\tan \theta) \\ y&=\theta\\ & Diff \quad w.r.t. \quad \theta \\ \frac{d y}{d \theta}&=1\\\\ Now,\\ \frac{d y}{d x}&=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}\\ &=\frac{1}{3}\end{aligned}$




Tags
Maharashtra State Board 12th Maths Book Solutions,Maharashtra State Board 12th Maths Book exercise Solutions,Maharashtra State Board 12th Maths textbook Solutions,Maharashtra State Board 12th Maths textbook exercise Solutions,Maharashtra State Board 12th Mathematics Book Solutions,Maharashtra State Board 12th Mathematics Book exercise Solutions,Maharashtra State Board 12th Mathematics textbook Solutions,Maharashtra State Board 12th Mathematics textbook exercise Solutions,Maharashtra State Board HSC 12th Mathematics Book Solutions,Maharashtra State Board HSC  12th Mathematics Book exercise Solutions,Maharashtra State Board HSC  12th Mathematics textbook Solutions,Maharashtra State Board HSC  12th Mathematics textbook exercise ,Solutions,Mathematics Part - II (Solutions) Textbook Solutions for ,AHARASHTRA Class 12 MATH, Mathematics Part - II (Solutions) Textbook Solutions for MAHARASHTRA Class 12 MATH, Maharashtra State Board HSC 12th Mathematics Book exercise 1.1 differentiation Solutions 2021 new,Maharashtra State Board HSC  12th Mathematics Book exercise 1.1 differentiation Solutions 2021 new Solutions,Maharashtra State Board HSC  12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new ,Maharashtra State Board HSC  12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new