Differentiation EX 1.1 Q.4 Q.5 Q.6 Q.7 Mathematics and statistic for arts and science

DERIVATIVE 
EX 1.1 

Q.4

i) $$\begin{array}{rl}f(x)&=f[g(x)] \\ f^{\prime}(x) & =\frac{d}{d x} f(x) \\ f^{\prime}(x) & =\frac{d}{d x} f[g(x)] \\ & =\frac{d}{d x} f\left(g(x) \cdot \frac{d}{d x} g(x)\right. \\ f^{\prime}(x) & =f^{\prime} g(x) \cdot g^{\prime}(x) \\ Now,\\ {f}^{\prime}(2)&=f^{\prime} g(2) \cdot g^{\prime}(2)\\ &=f^{\prime}(6) \cdot 4 \quad\\ &=-4 \times 4\\ &=-16 \end{array}$$
ii) $$\begin{array}{rl} R(x)&=g[3+f(x)]\\ R^{\prime}(x) &=g^{\prime}(3+f(x)] \cdot \frac{d}{d x}[3+f(x)] \\ &=g^{\prime}[3+f(x)]\left[\frac{d}{d x}(3)+\frac{d}{d x} f(x)\right] \\ R^{\prime}(x) &=g^{\prime}[3+f(x)]\left[0+f^{\prime}(x)\right] \\ Now \\ R^{\prime}(4)&=g^{\prime}[3+f(4)]\left[f^{\prime}(4)\right]\\ &=g^{\prime}[3+3] \cdot 5\\ &=g^{\prime}(6) \cdot 5\\ R^{\prime}(4)&=35 \end{array}$$ 
iii) $$\begin{array}{rl} If\\ s(x)&=f(9-f(x)] \\ s^{\prime}(x)&=\frac{d}{d x} f(9-f(x)]\\ &=f^{\prime}[9-f(x)] \cdot \frac{d}{d x}(9-f(x)]\\ &=f^{\prime}(9-f(x)]\left[\frac{d}{d x} 9-\frac{d}{d x} f(x)\right]\\ s^{\prime}(x)&=f^{\prime}(9-f(x)]\left[0-f^{\prime}(x)\right]\\ Now,\\ s^{\prime}(4)&=f^{\prime}[9-t(4)] f^{\prime}(4)\\ &=f^{\prime}[9-3] \cdot 5\\ &=t^{\prime}(6) \cdot 5\\ S^{\prime}(4)&=-20 \end{array}$$
iv) $$\begin{array}{rl} If \\ S(x)&=g[g(x)] \\ S^{\prime}(x)&=\frac{d}{d x} g[g(x)]\\ &=g[g(x)] \cdot \frac{d}{d x} g(x)\\ S^{\prime}(x)&=g^{\prime}(g(x)] \cdot g^{\prime}(x)\\ Now, \\ S^{\prime}(6)&=g^{\prime}(g(6)] \cdot g^{\prime}(6)\\ &=g^{\prime}(2) \cdot 7\\ &=4\\ S^{\prime}(6)&=28 \end{array}$$

Q.5
$\begin{array}{rl} f^{\prime}(3)&=-1\\ g^{\prime}(2)&=5\\ g(2)&=3\\ y&=f[g(x)]\\ \frac{d y}{d x}&=\frac{d}{d x} f[g(x)]\\ &=f^{\prime} g(x) \cdot \frac{d}{d x} g(x) \\ &=f^{\prime} g(x) \cdot g^{\prime}(x)\\ Now,\\ \left[\frac{d y}{d x}\right]_{x=2}&=f^{\prime} g(2) \cdot g^{\prime}(2)\\ &=f^{\prime}(3) \cdot 5\\ &=-1.5\\ &\left[\frac{d y}{d x}\right]_{x=2}=-5 \end{array}$

Q.6
$\begin{array}{rl} \quad f(1)&=4\\ g(1)&=3\\ f^{\prime}(1)&=3\\ g^{\prime}(1)&=4\\ h(x)&=\sqrt{4 f(x)+3 g(x)}\\ h^{\prime}(x)&=\frac{d}{d x} \sqrt{f f(x)}+3 g(x) \\ &=\frac{1}{2 \sqrt{1 f(x)+3 g(x)}} \cdot \frac{d}{d x}(4 f(x)+3 g(x)]\\ h^{\prime}(x)&=\frac{1}{e \sqrt{4 f(x)+3 g(x)}} \cdot\left[9 \cdot f^{\prime}(x)+3 \cdot g^{\prime}(x)\right]\\ Now, \\ \quad h^{\prime}(1)&=\frac{1}{2 \sqrt{+f(1)+3 g(1)}} \cdot\left[f f^{\prime}(1)+3 g^{\prime}(1)\right]\\ &=\frac{1}{2 \sqrt{1.4+3.3}} \cdot[4 \cdot 3+3.4]\end{array}$






Maharashtra state Board Mathematics and statistic for arts and science 
Maharashtra state Board Derivative Solution
H.S.C Derivative Answers

Tags
Maharashtra State Board 12th Maths Book Solutions
Maharashtra State Board 12th Maths Book exercise Solutions
Maharashtra State Board 12th Maths textbook Solutions
Maharashtra State Board 12th Maths textbook exercise Solutions
Maharashtra State Board 12th Mathematics Book Solutions
Maharashtra State Board 12th Mathematics Book exercise Solutions
Maharashtra State Board 12th Mathematics textbook Solutions
Maharashtra State Board 12th Mathematics textbook exercise Solutions
Maharashtra State Board HSC 12th Mathematics Book Solutions
Maharashtra State Board HSC  12th Mathematics Book exercise Solutions
Maharashtra State Board HSC  12th Mathematics textbook Solutions
Maharashtra State Board HSC  12th Mathematics textbook exercise Solutions
Mathematics Part - II (Solutions) Textbook Solutions for MAHARASHTRA Class 12 MATH, Mathematics Part - II (Solutions) Textbook Solutions for MAHARASHTRA Class 12 MATH, 
Maharashtra State Board HSC 12th Mathematics Book exercise 1.1 differentiation Solutions 2021 new
Maharashtra State Board HSC  12th Mathematics Book exercise 1.1 differentiation Solutions 2021 new Solutions
Maharashtra State Board HSC  12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new
Maharashtra State Board HSC  12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new