H.S.C.
Differentiation EX 1.1 Q.2 Maharashtra state Board Mathematics and statistic for arts and science
Differentiation
Ex 1.1Q.2
i) $$y=\cos \left(x^{2}+a^{2}\right)\\ Diff w.r.t.\quad x\\ \frac{d y}{d x}=\frac{d}{d x} \cos \left(x^{2}+a^{2}\right)\\ =-\sin \left(x^{2}+a^{2}\right) \cdot \frac{d}{d x}\left(x^{2}+a^{2}\right)\\ =-\sin \left(x^{2}+a^{2}\right)\left(\frac{d}{d x} x^{2}+\frac{d}{d x} a^{2}\right)\\ =-\sin \left(x^{2}+a^{2}\right)(2 x+0)\\ =-2 x \sin \left(x^{2}+a^{2}\right)\\$$
ii) $$\quad y=\sqrt{e^{(3 x+2)}+5}\\ Diff. w.r.t \quad x\\ \frac{d y}{d x}=\frac{d}{d x} \sqrt{e^{(2 x+2)}+5}\\ =\frac{1}{2 \sqrt{e^{(3 x+2)}+5}} \cdot \frac{d}{d x}\left(e^{3 x+2)}+5\right)\\ =\frac{1}{2 \sqrt{e^{(3 x+2)}+5}} \cdot\left(\frac{d}{d x} e^{(3 x+2)}+\frac{d}{d x} 5\right)\\ =\frac{1}{2\sqrt{e^{3 x+2}+5}}\left(e^{(3 x+2)}\frac{d}{d x}(3 x+2)+0\right)\\ =\frac{1}{2\sqrt{e^{(3 x+2)}+5}} \cdot\left(e^{(3 x+2)} \cdot 3\right)\\ =\frac{3}{2} \frac{(e^(3x+2)}{\sqrt{e^{(2 x+2)}+5}}\\$$
iii) $$y=\log \left[\tan \left(\frac{x}{2}\right)\right]\\ Diff w.r.t. \quad x \\ \frac{d y}{d x}=\frac{d}{d x} \log \left[\tan \left(\frac{x}{2}\right)\right]\\ =\frac{1}{\tan \left(\frac{x}{2}\right)} \frac{d}{d x} \tan \left(\frac{x}{2}\right)\\ =\frac{1}{\tan \left(\frac{x}{2}\right)} \cdot \sec ^{2}\left(\frac{x}{2}\right) \cdot \frac{d}{d x}\left(\frac{x}{2}\right)\\ =\frac{1}{\tan \left(\frac{x}{2}\right)} \cdot \sec ^{2}\left(\frac{x}{2}\right) \times \frac{1}{2}\\ =\frac{cos(x/2)}{2 \cdot \sin \left(\frac{x}{2}\right) }\times \frac{1}{\cos ^{2} x}\\ =\frac{1}{2 \cdot \sin \left(\frac{x}{2}\right)cos(x/2) } \qquad\because 2sinxcosx=sin2x\\ =\frac{1}{\sin x}\\ =\operatorname{cosec} x\\$$
iV) $$y=\sqrt{\tan \sqrt{x}}\\ \\ diff w.r.t. \quad x\\ =\frac{d y}{d x}=\frac{1}{2 \sqrt{\tan \sqrt{x}}} \cdot \frac{d}{d x}(\tan \sqrt{x})\\ =\frac{1}{2 \sqrt{\tan \sqrt{x}}} \cdot \sec ^{2} \sqrt{x} \cdot \frac{d}{d x}(\sqrt{x})\\ =\frac{1}{2 \sqrt{\tan \sqrt{x}}} \cdot \sec ^{2} \sqrt{x} \times \frac{1}{2 \sqrt{x}}\\ =\frac{\sec ^{2} \sqrt{x}}{4 \sqrt{\tan \sqrt{x}}}\\$$
V) $$\quad y=cot ^{3}\left[\log \left(x^{3}\right)\right]\\ \quad y=\cot \left[\log \left(x^{3}\right)\right]^{3}\\ Diff w.r.t. ..x\\ \frac{d y}{d x}=\frac{d}{d x} \cot \left[\log x^{3}\right]^{3}\\ =3 \cdot \cot ^{2} \log x^{3} \cdot \frac{d}{d x} \cot \left(\log \left(x^{3}\right)\right)\\ =3 \cot ^{2}\left(\log x^{3}\right) \cdot\left(-\operatorname{cosec}^{2} \log \left(x^{3}\right)\right) \cdot \frac{d}{d x} \log x^{3}\\ \left.=3 \cot ^{2}[ \log \left(x^{3}\right)\right] \cdot\left(-\operatorname{cosec}^{2} \log \left(x^{3}\right)\right) \cdot \frac{1}{x^{3}} \frac{d}{d x} x^{3}\\ =3\left(cot^{2}[ \log x^{3}\right] \cdot\left(-\operatorname{cosec}^{2} \log \left(x^{3}\right)\right) \cdot \frac{1}{x^{3}} 3 x^{2}\\ =\frac{-9 \operatorname{cosec}^{2}\left[\log \left(x^{3}\right)\right] \cdot \cot ^{2}\left[\log \left(x^{3}\right)\right]}{x}\\$$
Vi) $$\quad y=5^{\sin ^{3} x+3}\\ Taking log on both side\\ \log y=\log {5}. (\sin ^{3} x+3)\\ \log y=\left(\sin ^{3} x+3\right) \log 5\\ Diff w.r.t. x\\ \frac{1}{y} \frac{d y}{d x}=\log 5 \cdot \frac{d}{d x}\left(\sin ^{3} x+3\right)\\ \qquad =\log 5\left[\frac{d}{d x} \sin ^{3} x+\frac{d}{d x} 3\right]\times y\\ \qquad =\log 5\left[3 \sin ^{2} x \cdot \frac{d}{d x} \sin x\right] \times y\\ \qquad =\log 5\left[3 \cdot \sin ^{2} x \cdot \cos x\right] \times y\\ \qquad =3 \cdot \sin ^{2} x \cdot \cos x \cdot\left(5^{\sin ^{3} x+3}\right) \cdot(\log 5)\\$$
Vii) $$y=\operatorname{cosec}(\sqrt{\cos x})\\ Diff w.r.t \quad x\\ \frac{d y}{d x}=\frac{d}{d x}(\operatorname{cosec} \sqrt{\cos x})\\ =\operatorname{cosec} \sqrt{\cos x} \cdot \cot \sqrt{\cos x} \cdot \frac{d}{d x} \sqrt{\cos x}\\ =\operatorname{cosec} \sqrt{\cos x} \cdot \cot \sqrt{\cos x} \cdot \frac{1}{2 \sqrt{\cos x}} \times \frac{d}{d x} \cos x\\ =\operatorname{cosec} \sqrt{\cos x} \cdot \cot \sqrt{\cos x} \cdot \frac{1}{2 \sqrt{\cos x}} \times(-\sin x)\\ =\frac{-\sin x \operatorname{cosec} \sqrt{\cos x} \cdot \cot \sqrt{\cos x}}{2 \sqrt{\cos x}}\\$$
Viii))$$y=\log \left[\cos \left(x^{3}-5\right)\right]\\ Diff w.r.t. x\\ \frac{d y}{d x}=\frac{d}{d x} \cdot \log \left[\cos \left(x^{3}-5\right)\right]\\ \quad=\frac{1}{\cos \left(x^{3}-5\right)} \cdot \frac{d}{d x}\left[\cos \left(x^{3}-5\right)\right]\\ \quad =\frac{1}{\cos \left(x^{3}-5\right)} \cdot\left(-\sin \left(x^{3}-5\right) \cdot \frac{d}{d x}\left(x^{3}-5\right)\right.\\ \quad =\frac{1}{\cos \left(x^{3}-5\right)}\left(-\sin \left(x^{3}-5\right)\right) \cdot\left(3 x^{2}\right)\\ \quad =-3 x^{2} \frac{\sin \left(x^{3}-5\right)}{\cos \left(x^{3}-5\right)}\\ \quad =-3 x^{2} \tan \left(x^{3}-5\right)\\$$
iX) $$y=e^{3 \sin ^{2} x}-2 \cos ^{2} x\\ Diff w.r.t. x\\ \frac{d y}{d x}=\frac{d}{d x} e^{3 \sin ^{2} x-2 \cos ^{2} x}\\ =e^{\left(3 \sin ^{2} x-2 \cos ^{2} x\right)}\frac{d}{d x}\left(3 \sin ^{2} x-2 \cos ^{2} x\right)\\ =e^{\left(3 \sin ^{2} x-2 \cos ^{2} x\right)}\left[\frac{d}{d x} 3 \sin ^{2} x-\frac{d}{d x} 2 \cos ^{2} x\right]\\ =e^{\left(3 \sin ^{2} x-2 \cos ^{2} x\right)}[3.2 \sin x \cdot \frac{d}{d x} \sin x-2 \cdot 2 \cos x \frac{d}{d x}(\cos x)]\\ =e^{\left(3 \sin ^{2} x-2 \cos ^{2} x\right)}[3 \cdot 2 \cdot \sin x \cdot \cos x+2 \cdot 2 \cdot \cos \cdot \sin x]\\ =e^{\left(3 \sin ^{2} x-2 \cos ^{2} x\right)}[3 \cdot \sin 2 x+2 \cdot \sin 2 x] \qquad [\because 2sinxcosx=sin2x]\\ =5 \sin 2 x \cdot e^{\left(3 \sin ^{2} x-2 \cos ^{2} x\right)}\\$$
X) $$ \quad y=\cos ^{2}\left[\log \left(x^{2}+7\right)\right]\\ Diff wrt \quad x\\ \frac{d y}{d x}=\frac{d}{d x} \cos \left[\log \left(x^{2}+7\right)\right]^{2}\\ =2 \cdot \cos \left[\log \left(x^{2}+7\right)\right] \cdot \frac{d}{d x} \cos \left[\log \left(x^{2}+7\right)\right]\\ =2 \cdot \cos \left[\log \left(x^{2}+7\right)\right] \cdot\left(-\sin \log \left(x^{2}+7\right)\right] \frac{d}{d x} \log \left(x^{2}+7\right)\\ =2 \cos \left[\log \left(x^{2}+7\right)\right]\left(-\sin \log \left(x^{2}+7\right)\right] \frac{1}{x^{2}+7} \cdot \frac{d}{d x}\left(x^{2}+7\right)\\ =2 \cdot \cos \left[\log \left(x^{2}+7\right)\right]\left(-\sin \left(\log \left(x^{2}+7\right) \cdot \frac{1}{x^{2}+7}\right) \cdot 2 x\right.\\ =\frac{-2 x}{x^{2}+7} \sin 2\left[\log \left(x^{2}+7\right)\right] \qquad [\because 2sinxcox=sin2x]\\$$
Xi)$$y=\tan [\cos (\sin x)]\\ Diff w.r.t.\quad x\\ \frac{d y}{d x}=\frac{d}{d x} \tan [\cos (\sin x)]\\ =\sec ^{2}[\cos (\sin x)] \cdot \frac{d}{d x}[\cos (\sin x)]\\ =\sec ^{2}[\cos (\sin x)]\left(-\sin (\sin x) \cdot \frac{d}{d x} \sin x\right.\\ =\sec ^{2}[\cos (\sin x)][-\sin (\sin x)] \cdot \cos x\\ =-\sec ^{2}[\cos (\sin x)] \cdot \sin (\sin x) \cdot \cos x\\$$
Xii)$$y=\sec \left[\tan \left(x^{4}+4\right)\right]\\ Diff w.r.t \quad x\\ \frac{d y}{d x}=\frac{d}{d x} \sec \left[\tan \left(x^{4}+4\right)\right]\\ =\sec \left(\tan \left(x^{4}+4\right)\right] \cdot \tan \left[\tan \left(x^{4}+4\right)]\right.\frac{d}{d x}\left(\tan \left(x^{4}+4\right)\right]\\ =\sec \left(\tan \left(x^{4}+4\right)\right] \cdot \tan \left[\tan \left(x^{4}+4\right)] \sec ^{2}\left(x^{4}+4\right)\right.\frac{d}{d x}\left(x^{4}+4\right)\\ =\sec \left(\tan \left(x^{4}+4\right) \cdot \tan \left[\tan \left(x^{4}+4\right)] \cdot \sec ^{2}\left(x^{4}+4\right) \cdot 4 x^{3}\right.\right.\\ =4 x^{3} \sec ^{2}\left(x^{4}+4\right) \cdot \sec \left[\tan \left(x^{4}+4\right)\right] \tan \left[\tan \left(x^{4}+4\right)\right]\\$$
Xiii)$$ y=e^{\log \left[(\log x)^{2}-\log x^{2}\right]}\\ using e^{\log x}=x\\ y=(\log x)^{2}-2 \log x\\ Diff w.r.t. \quad x \\ \frac{d y}{d x}=\frac{d}{d x}\left[(\log x)^{2}-2 \cdot \log x\right]\\ =\frac{d}{d x}(\log (x)]^{2}-2.\frac{d }{d x}\log x\\ = 2. \log x \cdot \frac{d}{d x} \log x-2 \times\frac{1}{x}\\ =\frac{2. \log x}{x}-\frac{2}{x}\\$$
Xiv)$$ y=\sin \sqrt{\sin \sqrt{x}}\\ Diff w.r.t.\quad x\\ \frac{d y}{d x}=\frac{d}{d x} \sin \sqrt{\sin \sqrt{x}}\\ =\cos \sqrt{\sin \sqrt{x}} \cdot \frac{d}{d x} \sqrt{\sin \sqrt{x}}\\ =\cos \sqrt{\sin \sqrt{x}} \cdot \frac{1}{2 \sqrt{\sin \sqrt{x}}} \cdot \frac{d}{d x}{\sin \sqrt{x}}\\ =\cos \sqrt{\sin \sqrt{x}} \cdot \frac{1}{2 \sqrt{\sin \sqrt{x}}} \cdot \cos \sqrt{x} \cdot \frac{d}{d x} \sqrt{x}\\ =\cos \sqrt{\sin \sqrt{x}} \frac{1}{2 \sqrt{\sin \sqrt{x}}} \cdot \cos \sqrt{x} \times \frac{1}{2 \sqrt{x}}\\ =\frac{\cos \sqrt{\sin \sqrt{x}} \cdot \cos \sqrt{x}}{4 \sqrt{x} \sqrt{\sin \sqrt{x}}}\\$$
Xv))$$ y=\log \left[\sec \left(e^{x^{2}}\right)\right]\\ Diff w.r.t \quad x \\ \frac{d y}{d x}=\frac{d}{d x} \log \left[\sec \left(e^{x^{2}}\right)\right]\\ =\frac{1}{\sec \left(e^{x^{2}}\right)} \cdot \frac{d}{d x} \sec \left(e^{x^{2}}\right)\\ =\frac{1}{\sec \left(e^{x^{2}}\right)} \cdot \operatorname{scc}\left(e^{x^{2}}\right) \cdot \tan \left(e^{x^{2}}\right) \cdot \frac{d}{d x} e^{x^{2}}\\ =\tan \left(e^{x^{2}}\right) \cdot e^{x^{2}} \cdot \frac{d}{d x} x^{2}\\ =\tan \left(e^{x^{2}}\right) \cdot e^{x^{2}} \cdot 2 x\\ =2 x \cdot e^{x^{2}} \cdot \tan \left(e^{x^{2}}\right)\\$$
Xvi))$$y=\log _{e} 2(\log x)\\ Diff w.r.t. \quad x\\ \frac{d y}{d x}=\frac{1}{2 \log x} \cdot \frac{d}{d x} \log x\\ =\frac{1}{2 \log x} \times \frac{1}{x}\\ =\frac{1}{2 x \cdot \log x}\\$$
Xvii)$$ y=[\log [\log (\log x)]]^2\\ Diff w.rt. \quad x \\ \frac{d y}{d x}=\frac{d}{d x}[\log [\log (\log x)]]^{2}\\ =2 \cdot \log [\log (\log x)] \cdot \frac{d}{d x} \log [\log (\log x)]\\ =2 \cdot \log (\log \log (x)] \cdot \frac{1}{\log (\log x)} \cdot \frac{d}{d x} \log [\log (x)]\\ =2 \cdot \log \left[\log (\log (x)] \frac{1}{\log (\log x)} \cdot \frac{1}{\log x} \frac{d}{d x} \log x\right.\\ =\frac{2 \cdot \log [\log (\log x)]}{\log [\log (x)] \cdot \log x} \times \frac{1}{x}\\ =\frac{2 \log (\log \log (x)]}{x \log x \log \log x)}\\$$
Xviii)$$ y=\sin ^{2} x^{2}-\cos ^{2} x^{2}\\ Diff w.r.t. \quad x\\ \frac{d y}{d x}=\frac{d}{d x}\left[\left(\sin x^{2}\right)^{2}-\left(\cos x^{2}\right)^{2}\right]\\ =\frac{d}{d x}\left(\sin x^{2}\right)^{2}-\frac{d}{d x}\left(\cos x^{2}\right)^{2}\\ =2 \cdot \sin x^{2} \cdot \frac{d}{d x} \sin x^{2}-2 \cdot \cos x^{2} \frac{d}{d x} \cos x^{2}\\ =2 \cdot \sin x^{2} \cdot \cos x^{2} \cdot \frac{d}{d x} x^{2}+2 \cdot \cos x^{2} \cdot \sin ^{2} x^{2} \frac{d}{d x} x^{2}\\ =\sin 2 x^{2} \cdot 2 x+ \sin 2 x^{2} \cdot 2 x \quad \because 2sinxcox=sin2x\\ =\quad 4 x \cdot \sin \left(2 x^{2}\right)$$
Tags
Maharashtra State Board 12th Maths Book Solutions
Maharashtra State Board 12th Maths Book exercise Solutions
Maharashtra State Board 12th Maths textbook Solutions
Maharashtra State Board 12th Maths textbook exercise Solutions
Maharashtra State Board 12th Mathematics Book Solutions
Maharashtra State Board 12th Mathematics Book exercise Solutions
Maharashtra State Board 12th Mathematics textbook Solutions
Maharashtra State Board 12th Mathematics textbook exercise Solutions
Maharashtra State Board HSC 12th Mathematics Book Solutions
Maharashtra State Board HSC 12th Mathematics Book exercise Solutions
Maharashtra State Board HSC 12th Mathematics textbook Solutions
Maharashtra State Board HSC 12th Mathematics textbook exercise Solutions
Mathematics Part - II (Solutions) Textbook Solutions for MAHARASHTRA Class 12 MATH, Mathematics Part - II (Solutions) Textbook Solutions for MAHARASHTRA Class 12 MATH,
Maharashtra State Board HSC 12th Mathematics Book exercise 1.1 differentiation Solutions 2021 new
Maharashtra State Board HSC 12th Mathematics Book exercise 1.1 differentiation Solutions 2021 new Solutions
Maharashtra State Board HSC 12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new
Maharashtra State Board HSC 12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new
Maharashtra State Board HSC 12th Mathematics Book exercise 1.1 differentiation Solutions 2021 new Solutions
Maharashtra State Board HSC 12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new
Maharashtra State Board HSC 12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new