Chapter 1 - Differentiation
Exercise 1.3
Q.3 Differentiate the following w. r. t. x
i)
$\begin{aligned}
\sqrt{x}+\sqrt{y}=\sqrt{a} \\
Sol^n\\
Diff \quad w.r.t \quad x \\
\frac{d}{d x} \sqrt x+\frac{d}{d x} \sqrt{y}& =0 \\
\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \frac{d y}{d x}&=0\\
\frac{1}{2 \sqrt{y}} \frac{d y}{d x}=-\frac{1}{2\sqrt{x}} \\
\frac{d y}{d x}=-\sqrt\frac{y}{x}
\end{aligned}$
ii)
$\begin{aligned}
&x \sqrt{x}+y\sqrt{y}=a \sqrt{a}\\
&x \cdot x^{\frac{1}{2}}+y \cdot y^{\frac{1}{2}}=a \cdot a^{\frac{1}{2}}\\
&x^{\frac{3}{2}}+y^{\frac{3}{2}}=a^{\frac{3}{2}}\\
&Diff \quad w.r.t \quad x\\
&\frac{3}{2} x^{\frac{3}{2}-1}+\frac{3}{2} \cdot y^{\frac{3}{2}-1} \cdot \frac{d y}{d x}=\frac{d}{d x} a^{3 / 2}\\
&\frac{3}{2} x^{\frac{1}{2}}+\frac{3}{2} y^{\frac{1}{2}} \frac{d y}{d x}=0\\
&\frac{3}{2} \sqrt{y} \frac{d y}{d x} =-\frac{3}{2} \sqrt{x} \\ &\sqrt{y} \frac{d y}{d x}=-\sqrt{x} \\
&\frac{d y}{d x} =-\sqrt{\frac{x}{y}} \end{aligned}$
iii)
$\begin{aligned}
&x+\sqrt{x y}+y=1\\Sol^n\\
&Diff \quad wrt \quad x\\
&\frac{d}{d x}(x)+\frac{d}{d x} \sqrt{x y}+\frac{d}{d x} y=\frac{d}{d x}(1)\\
&1+\frac{1}{2 \sqrt{x y}} \frac{d}{d x}(x \cdot y)+\frac{d y}{d x}=0\\
&1+\frac{1}{2 \sqrt{x y}}\left[x \cdot \frac{d y}{d x}+y \cdot \frac{d}{d x}(x)\right]+\frac{d y}{d x}=0\\
&1+\frac{1}{2 \sqrt{x y}}\left[x \cdot \frac{d y}{d x}+y\right]+\frac{d y}{d x}=0\\
&\frac{d y}{d x}\left[\frac{x}{2 \sqrt{x y}}+1\right]+1+\frac{y}{2 \sqrt{x y}}=0\\
&\frac{d y}{d x}\left[\frac{1}{2} {\frac{\sqrt x}{\sqrt y}}+1\right]+1+\frac{1}{2} {\frac{\sqrt y}{\sqrt x}}=0\\
&\frac{d y}{d x}\left[\frac{\sqrt{x}+2\sqrt{y}}{2 \sqrt{y}}\right] =-1-\frac{\sqrt{y}}{2 \sqrt{x}} \\ \\
&\frac{d y}{d x}\left[\frac{\sqrt{x}+2\sqrt{y}}{2 \sqrt{y}}\right] =-\frac{2 \sqrt{x}+{\sqrt{y}}}{2 \sqrt{x}} \\ \\
&\frac{d y}{d x}=-\frac{\frac{2 \sqrt{x}+\sqrt{y}}{2 \sqrt{x}}}{\frac{2 \sqrt{y}+\sqrt{x}}{2 \sqrt{y}}} \\ \\
&\frac{d y}{d x}=-\frac{\sqrt{y}(2 \sqrt{x}+\sqrt{y})}{\sqrt{x}(2 \sqrt{y}+\sqrt{x})} \end{aligned}$
iv)
$\begin{aligned}
&x^3+ x^2 y + xy^2 + y^3 = 81\\
Sol^n\\
&Differentiating \quad w.r.t. \quad x\\
&\frac{d}{d x}\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)=\frac{d}{d x}81\\
&\frac{d\left(x^{3}\right)}{d x}+\frac{d\left(x^{2} y\right)}{d x}+\frac{d\left(x y^{2}\right)}{d x}+\frac{d\left(y^{3}\right)}{d x}=0 \\
&3 x^{2}+\frac{d\left(x^{2} y\right)}{d x}+\frac{d\left(x y^{2}\right)}{d x}+3 y^{2} \frac{d y}{d x}=0\\
&3 x^{2}+\left(y\frac{d}{dx}x^2 +x^{2} \cdot \frac{d y}{d x }\right)+\left(x\frac{d}{d x} y^{2}+y^2\frac{d}{dx} x\right)+3 y^{2} \frac{d y}{y}=0\\
&3 x^{2}+\left(2 x \cdot y+x^{2} \frac{d y}{d x}\right)+\left(x 2 y \frac{d y}{d x}+ y^2 \right)+3 y^{2} \frac{d y}{d x}=0\\
&3 x^{2}+2 x y+x^{2} \frac{d y}{d x}+y^2+2 xy\frac{d y}{d x}+3 y^{2} \frac{d y}{d x}=0\\
&x^{2} \frac{d y}{d x}+2 xy\frac{d y}{d x}+3 y^{2} \frac{d y}{d x}=-3 x^{2}-2 x y-y^2\\
&\frac{d y}{d x} [x^{2} +2 xy+3 y^{2}]=-3 x^{2}-2 x y-y^2\\
&\frac{d y}{d x} =-\frac{3 x^{2}+2 x y+y^2}{x^{2} +2 xy+3 y^{2}}\end{aligned}$
v)
$\begin{aligned}
&x^{2} y^{2}-\tan ^{-1} \sqrt{x^{2}+y^{2}}=\cot ^{-1} \sqrt{x^{2}+y^{2}}\\
&x^{2} y^{2}=\tan ^{-1} \sqrt{x^{2}+y^{2}}+\cot ^{-1} \sqrt{x^{2}+y^{2}}\\
&Using \quad \tan ^{-1} \theta+\cot ^{-1} \theta=\frac{\pi}{2}\\
&\therefore \quad x^{2} y^{2}=\frac{\pi}{2}\\
&Take \quad squartroot \quad both \quad side\\
&\sqrt{x^{2} y^{2}}=\sqrt{\frac{\pi}{2}}\\
&x y=\sqrt{\frac{\pi}{2}}\\
&Diff \quad w.r.t\quad x \\
&x \cdot \frac{d y}{d x}+y \frac{d}{d x}(x)=\frac{d}{d x} \sqrt{\frac{\pi}{2}}\\
&x \cdot \frac{d y}{d x}+y=0\\
&\frac{d y}{d x}=\frac{-y}{x}\end{aligned}$
vi)
$\begin{aligned}
&xe^y + ye^x = 1\\
sol^n\\
&\left(x \frac{d}{d x}e^{y} +e^{y} \frac{d}{d x} x\right)+\left(y \frac{d}{d x}e^{x}+e^{x} \cdot \frac{d y}{d x}\right)=0\\
&\left(x .e^{y} \frac{d y}{d x}+e^{y} .1\right)+\left(y e^{x}+e^{x} \cdot \frac{d y}{d x}\right)=0\\
&\frac{d y}{d x}\left(x e^{y}+e^{x}\right)=-e^{y}-y e^{x}\\
&\Rightarrow \frac{d y}{d x}=-\frac{e^{y}+y e^{x}}{x e^{y}+e^{x}}
\end{aligned}$
vii)
$\begin{aligned}
&e^{x+y}=\cos (x-y) \\
&Diff \quad w.r.t \quad x\\
&\frac{d}{d x} e^{x+y}=\frac{d}{d x} \cos (x-4) \\
&e^{x+4} \frac{d}{d x}(x+y)=-\sin (x-4) \cdot \frac{d}{d x}(x-y) \\
&e^{x+4} \cdot\left(1+\frac{d y}{d x}\right)=-\sin (x-4) \cdot\left(1-\frac{d y}{d x}\right)\\
&e^{x+y}+e^{x+y} \cdot \frac{d y}{d x}=-\sin (x-y)+\sin (x-4) \frac{d y}{a x}\\
&e^{x+y} \frac{d y}{d x}-\sin (x-4) \frac{d y}{d x}=-\sin (x-4)-e^{x+y}\\
&\frac{d y}{d x}\left[e^{x+4}-\sin (x-4)\right]=-\left[\sin (x-4)+e^{x+y}\right]\\
&\frac{d y}{d x}=-\left[\frac{e^{x+4}+\sin (x-y)}{e^{x+y}-\sin (x-y)}\right]
\end{aligned}$
viii)
$\begin{aligned}
&\cos (x y)=x+y\\
&Diff w.r.t \quad x\\
&\frac{d}{d x} \cos (x y)=\frac{d}{d x}(x+y)\\
&-\sin (x y)\left[x \cdot \frac{d y}{d x}+y \cdot \frac{d}{d x} x\right]=1+\frac{d y}{d x}\\
&-\sin (xy)\left[x \cdot \frac{d y}{d x}+y\right]=1+\frac{d y}{d x}\\
&-\sin (x y) x \cdot \frac{d y}{d x}-y\sin (x y)=1+\frac{d y}{d x}\\
&\frac{d y}{d x}[-x \sin (x y)-1]=1+y \sin (x y)\\
&\frac{d y}{d x}[-(x \sin (x y)+1)]=1+y \sin (x y)\\
&\frac{d y}{d x}=-\frac{1+y \sin (x y)}{1+x \sin (x y)}\end{aligned}$
ix)
$\begin{aligned}
&e^{e^{x-y}}=\frac{x}{y}\\
&Taking \quad log \quad on \quad both \quad side\\\\
&\log e^{e^{x-y}}=\log \left(\frac{x}{y}\right)\\
&e^{x-y} \log e=\log x-\log y\\
&e^{x-y}=\log x-\log y\\\\
&Diff \quad w.r.t \quad x\\
&\frac{d}{d x} e^{x-y}=\frac{d}{d x} \log x-\frac{d}{d x} \log y\\
&e^{x-y} \cdot \frac{d}{d x}(x-y)=\frac{1}{x}-\frac{1}{y} \cdot \frac{d y}{d x}\\
&e^{x-y} \cdot\left(1-\frac{d y}{d x}\right)=\frac{1}{x}-\frac{1}{y} \frac{d y}{d x}\\
&e^{x-y}-e^{x-y} \frac{d y}{d x}=\frac{1}{x}-\frac{1}{y} \frac{d y}{d x}\\
&\frac{1}{y} \frac{d y}{d x}-e^{x-y} \frac{d y}{d x}=\frac{1}{x}-e^{x-y}\\
&\frac{d y}{d x}\left[\frac{1}{y}-e^{x-y}\right]=\frac{1-x e^{x-y}}{x}\\
&\frac{d y}{d x}\left[\frac{1-y e^{x-y}}{y}\right]=\frac{1-x e^{x-y}}{x}\\
&\frac{d y}{d x}=\frac{y\left(1-x e^{x-y}\right)}{x\left(1-y e^{x-y}\right)}\end{aligned}$
x)
$\begin{aligned}
&x+\sin (x+y)=y-\cos (x-y)\\
&Diff \quad w.r.t \quad x\\
&\frac{d}{d x} x+\frac{d}{d x} \sin (x+y)=\frac{d y}{d x}-\frac{d}{d x} \cos (x-y)\\
&1+\cos (x+y) \cdot \frac{d}{d x}(x+y)=\frac{d y}{d x}+\sin (x-y) \frac{d}{d x}(x-y)\\
&1+\cos (x+y)\left(1+\frac{d y}{d x}\right)=\frac{d y}{d x}+\sin (x-4)\left(1-\frac{d y}{d x}\right)\\
&1+\cos (x+4)+\cos (x+4) \cdot \frac{d y}{d x}=\frac{d y}{d x}+\sin (x-4)-\sin (x+1)\frac {d y}{d x}\\
&\frac{d y}{d x}[\cos (x+y)+\sin (x-4)-1]=\sin (x-4)-\cos (x+y)-1\\
&\frac{d y}{d x}=\frac{\sin (x-4)-\cos (x+4)-1}{\cos (x+4)+\sin (x-4)-1}\end{aligned}$
Tags
Maharashtra board , Differentiation , Derivative ,Maths , Maharashtra , Board,Maths lecture , Best maths teacher on you tube , Class 12 maths , Class 12 differentiation , Hsc maths , Hsc differentiation , Maths lectures , Maths tricks , Derivative theorems , First principle derivative , How to find derivative , Fyjc , Syjc , Differentiability , Calculus , Differentiation class 12 , Differentiation formulas ,hsc new maharashtra state board 12th maths textbooks Exercise solution,12th maharashtra state board maths solution book pdf part 1,hsc class 12 maths textbook part 1,12th maharashtra state board maths solution book pdf part 2,12th state board maths solution book pdf,hsc class 12 maths textbook part 2,weightage of chapters in maths class 12 hsc 2020,maharashtra state board class 12 maths solutions pdf,Maharashtra Board, New paper Pattern for State board, Hsc new pattern, Mathematics,Maharashtra State Board 12th Maths Book Solutions,Maharashtra State Board 12th Maths Book exercise Solutions,Maharashtra State Board 12th Maths textbook Solutions,Maharashtra State Board 12th Maths textbook exercise Solutions,Maharashtra State Board 12th Mathematics Book Solutions,Maharashtra State Board 12th Mathematics Book exercise Solutions,Maharashtra State Board 12th Mathematics textbook Solutions,Maharashtra State Board 12th Mathematics textbook exercise Solutions,Maharashtra State Board HSC 12th Mathematics Book Solutions,Maharashtra State Board HSC 12th Mathematics Book exercise Solutions,Maharashtra State Board HSC 12th Mathematics textbook Solutions,Maharashtra State Board HSC 12th Mathematics textbook exercise ,Solutions,Mathematics Part - II (Solutions) Textbook Solutions for ,AHARASHTRA Class 12 MATH, Mathematics Part - II (Solutions) Textbook Solutions for MAHARASHTRA Class 12 MATH, Maharashtra State Board HSC 12th Mathematics Book exercise 1.3 differentiation Solutions 2021 new,Maharashtra State Board HSC 12th Mathematics Book exercise 1.3 differentiation Solutions 2021 new Solutions,Maharashtra State Board HSC 12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new ,Maharashtra State Board HSC 12th Mathematics textbook exercise 1.1 differentiation Solutions 2021 new differentiation 12th hsc solution,differentiation 12th hsc solution,differentiation, 12th hsc pdf,differentiation solution class 12 hsc,differentiation exercises with answers,differentiation 12th hsc pdf download,differentiation exercises with answers pdf class 12,differentiation 12th hsc pdf commerce,differentiation target pdf,navneet guide pdf